ON OPTIMAL MATCHINGS

M. AJTAI, J. KOMLÓS and G. TUSNÁDY

Received 14 October 1983

Given n random blue and n random red points on the unit square, the transportation cost between them is tipically $\sqrt{n \log n}$.

Given two sets of points $X_1, ..., X_n$, and $Y_1, ..., Y_n$, the transportation cost is defined as

$$T_n = \min_{\pi} \sum_{i=1}^n d(X_{\pi(i)}, Y_i),$$

where d stands for distance, and the min is taken over all permutations π of the integers 1, ..., n. The purpose of the paper is to investigate the transportation cost for random input X, Y.

Assume that the points $X_1, \ldots, X_n, Y_1, \ldots, Y_n$ are chosen at random, independently of each other, with a uniform distribution on the unit square Q.

Theorem

(1)
$$C_1(n\log n)^{1/2} < T_n < C_2(n\log n)^{1/2}$$

with probability 1-o(1).

A slightly weaker upper bound

$$T_n = O(n^{1/2} \log n)$$

has been achieved by Karp.

In one sense the two dimensional case is the most interesting case, for in one dimension T_n can be determined explicitly and thus its magnitude is easily seen, while in dimension $r \ge 3$ T_n is as small as $n^{1-1/r}$, which is a trivial lower bound for typical T_n , since nearest neighbours are at a distance $n^{-1/r}$.

(Observe that in one dimension the optimal matching is the merging of the two ordered samples. In case $r \ge 3$ the final transport cost is resulted by a convergent sum which fact explains the absence of an extra ($\log n$)^c term.)

The Theorem generalizes to

$$T_n(p) = \min_{\pi} \sum_{i=1}^n d^p(X_{\pi(i)}, Y_i)$$

leading to the estimate $n(\log n/n)^{p/2}$, reflecting that a typical blue point moves a distance $(\log n/n)^{1/2}$ to the coupled red point.

Proof. First we will prove the lower part of (1). Following the method of Ford and Fulkerson, we construct a Lipschitzian function f on Q such that

(2)
$$A(f) = \sum_{i=1}^{n} f(X_i) - \sum_{i=1}^{n} f(Y_i) \ge LC_1 (n \cdot \log n)^{1/2},$$

where L is the Lipschitzian parameter of f i.e.

$$|f(x)-f(y)| \le L d(x,y), \quad x, y \in Q.$$

Then, for arbitrary permutation π ,

$$T_n = \sum_{i=1}^n d(X_{\pi(i)}, Y_i) \ge \frac{1}{L} \sum_{i=1}^n |f(X_{\pi(i)}) - f(Y_i)| \ge C_1 (n \log n)^{1/2}.$$

Roughly saying the construction goes as follows. Let $m=0.1 \log n$. For i=1, 2, ..., m let Q_{ij} , $j=1, 2, ..., 4^i$ denote the subsquares of Q obtained by dividing both coordinates into 2^i equal parts. Set

(4)
$$X(Q_{ij}) = \sum_{k} I(X_k, Q_{ij}), \quad Y(Q_{ij}) = \sum_{k} I(Y_k, Q_{ij}), \quad V(Q_{ij}) = X(Q_{ij}) - Y(Q_{ij}),$$

where I(x, A)=1 for $x \in A$ and I(x, A)=0 otherwise. Then for the function $f(u) = \sum_{i} V(Q_{ij}) I(u, Q_{ij})$

(5)
$$A(f) = \sum_{ij} V^2(Q_{ij}) \sim Cn \log n.$$

(Here and from now on C denotes absolute constans with values varying from formula to formula.) For each fixed index i in (5) the summation on j results terms of magnitude Cn while i runs up to $m=0.1 \log n$.

Unfortunately, this function f is not Lipschitzian. That is why we redefine V and f as follows. Let D(x, A) denote the distance of the point x and the set A, and D(A) the diameter of A. Now we set

(6)
$$V(Q_{ij}) = \sum_{k} \frac{D(X_k, \overline{Q}_{ij}) - D(Y_k, \overline{Q}_{ij})}{D(Q_{ij})},$$

and

$$f(u) = \sum_{i,j} \frac{V(Q_{ij})}{D(Q_{ij})} D(u, \overline{Q}_{ij}),$$

where bar indicates complementary set. This function is Lipschitzian already, but with a large constant. The Lipschitzian constant of the pyramidal function $D(u, \bar{Q}_{ij})$ is 1, the value of the coefficient $V(Q_{ij})/D(Q_{ij})$ is approximately normal with variance about n, and for any $u \in Q$ the number of non-void terms in the sum is m = 0

0.1 log n. The sum of these non-void terms is typically $O((n \log n)^{1/2})$, but at some points u the effects of the large deviations add up to $n^{1/2} \log n$.

For cutting down the Lipschitzian constant from $n^{1/2} \log n$ to $(n \log n)^{1/2}$ an appropriate stopping rule will be introduced.

Let Q_i^u denote the Q_{ij} that contains u and

$$f_i(u) = \frac{V(Q_i^u)}{D(Q_i^u)} D(u, \overline{Q}_i^u).$$

Then

$$f_i'(u) = \frac{V(Q_i^u)}{D(Q_i^u)} D'(u, \overline{Q}_i^u),$$

and the derivate $D'(u, \overline{D}_i^u)$ exists in the interiors of the four triangles into which the diagonals split the square Q_i^u . The values of this derivative are the four vectors $(\pm 1, 0)$, $(0, \pm 1)$. Let the stopping time t(u) be defined as the largest $t \le m$ such taht

(7)
$$\sup_{v \in O_{+}^{n}} \max_{1 \le k \le t} \left| \sum_{i=1}^{k} f_{i}'(v) \right| \le (Cn \log n)^{1/2}.$$

Now the final version of the function f is

(8)
$$f(u) = \sum_{i=1}^{t(u)} f_i(u).$$

This function f is continuous and piecewise differentiable, hence (7) implies that f is Lipschitzian with constant $L=\sqrt{Cn\log n}$.

Now we are going to show that for this f we still have $A(f) \ge Cn \log n$ with probability 1-o(1). Our stopping rule is such that the inequality $t(u) \ge i$ implies $t(v) \ge i$ for all $v \in Q_i^n$. Let U_{ij} be equal to 1 if $t(u) \ge i$ on Q_{ij} , and zero otherwise. Then

 $A(f) = \sum_{i,j} U_{ij} V^2(Q_{ij}).$

The sequence of functions τ_i defined by $\tau_i(u)=1$ if $t(u)\geq i$, and $\tau_i(u)=0$ otherwise, is monotone decreasing, hence so is the sequence of their integrals

$$U_i = \int_{Q} \tau_i(u) du = 4^{-i} \sum_{j} U_{ij}.$$

The main point is that

$$(9) U_m \ge 1/2$$

with probability 1-o(1). This implies that $A(f) \ge Cn \log n$, because with probability 1-o(1) we have

(10)
$$\sum_{i=1}^{4^i} \varepsilon_j V^2(Q_{ij}) \ge Cn$$

for any i and any choice of numbers $\varepsilon_j = 0$, 1, such that

$$\sum_{i=1}^{4^i} \varepsilon_i \ge \frac{1}{2} 4^i$$

if only C is small enough.

For proving (9) and (10) the following embedding theorem can be used ([3], [5]): Set

$$G(u) = \sum_{k=1}^{n} I(X_k, R^u), \quad u \in Q,$$

where R^u denotes the rectangle connecting the origin with the point u. Then there is a two-dimensional Wiener process W(u) such that the Brownian bridge

$$B(u) = W(u) - \lambda(R^u)W(1)$$

(where $\lambda(A)$ stands for the area of the set A) approximates G(u) in the following sense

$$(11) P\left(\sup_{u\in O}\left|G(u)-(n\lambda(R^n)+n^{1/2}B(n))\right|\geq \log n(C\log n+x)\right)\leq Ke^{-\alpha x},$$

C, K, α are positive absolute constants. Hence the process $V(Q_{ij})$ is approximated by the corresponding Gaussian process $W(Q_{ij})$ as near as $C \log^2 n$ with probability 1-o(1). For the Gaussian process $W(Q_{ij})$ (9) and (10) are easily seen.

For defining the Wiener process $W(Q_{ij})$ it is enough to postulate that for fixed index i the random variables $W(Q_{ij})$ are independent Gaussian variables, and the set-function W(.) is additive.

This implies the validity of (10) for the process $V(Q_{ij})$ since the number of terms in (10) is $4^i \le 4^m \ll n/\log^2 n$. Similarly, (9) is implied for $V(Q_{ij})$ with a possibly smaller C in definition (7). Now we turn to proving the upper part of (1). We are going to assign to every point X_i a rectangle R_i^x of area 1/n such that these rectangles form a partition of Q, and the transportation cost

$$S_n^X = \sum_{i=1}^n \int_{R^X} d(x_i, u) du$$

satisfies

$$S_n^X < C(n\log n)^{1/2}$$

with probability 1-o(1). A similar construction for the points Y_i and the triangle inequality

 $T_n \leq S_n^X + S_n^Y$

yield the upper part of (1). (Indeed, spreading the points X_i uniformly on the corresponding R_i^x and spreading the points Y_i uniformly on the corresponding R_i^x lead to the same uniform measure on Q, and thus they together determine a transportation from the points X_i to the points Y_i . The best transportation however is always a matching.)

Now given a set of points X_1, \ldots, X_n in Q, we construct a monotone sequence of partitions $\{R_{i1}, R_{i2}, \ldots\}$ $i=1, 2, \ldots$ such that the R_{ij} are (possibly degenerated) rectangles and

(12)
$$\lambda(R_{ij}) = \frac{1}{n} X(Q_{ij}), \quad i = 1, 2, ..., \quad j = 1, 2, ..., 4^i,$$

(see (4)). Let us number the four quadrants Q_{11} , Q_{12} , Q_{13} , Q_{14} of Q as follows:

 $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$. We push the horizontal bisector of Q for getting two halves of areas

$$\frac{1}{n}(X(Q_{11})+X(Q_{12}))$$
 and $\frac{1}{n}(X(Q_{13})+X(Q_{14})).$

In the upper half we push the vertical bisector to obtain the rectangles R_{11} and R_{12} with areas given in (12), and then do the same in the lower half. Note that the new vertical walls are not necessarily collinear. We can imagine the unit square Q as being made of a flexible membrane, and when pushing the walls the interiors of the quadrants transform in an affine way. In the next step we draw the bisectors within each quadrants R_{11} , R_{12} , R_{13} , R_{14} and then pushing the walls just as above we get the subrectangles R_{2} , $1 \dots$, R_{2} , 16 satisfying (12). We follow the same refining for all $i \leq M = \log n$. For a typical random sample X_i , every cell Q_{Mj} contains at most one sample point and thus every non-degenerate R_{Mj} is of area 1/n.

Now we estimate the transportation cost. The height of R_{k1} is

$$h_{k1} = \prod_{i=1}^{k} \frac{X(Q_{i1}) + X(Q_{i2})}{X(Q_{i1}) + X(Q_{i2}) + X(Q_{i3}) + X(Q_{i4})} = \prod_{i=1}^{k} \frac{X(Q_{i1}) + X(Q_{i2})}{X(Q_{i-1,1})},$$

(where $Q_{01} = Q$), and the width of R_{k1} is

$$w_{k1} = \prod_{i=1}^{k} \frac{X(Q_{i1})}{X(Q_{i1}) + X(Q_{i2})}.$$

The numbers h_{kj} and w_{kj} are of similar form. It is more complicated to follow the movement of the points of Q. Let u be an arbitrary point in Q. If Q_{ij} contains u, and w and h denote the distances of u from the nearest vertical and horizontal walls of Q_{ij} , then after the i-th step the image u_i of u in R_{ij} will have corresponding distances $w2^iw_{ij}$, $h2^ih_{ij}$. Hence in the (i+1)-st step the vertical shift of u_i will be

$$h2^{i+1}h_{i+1,j_1} - h2^{i}h_{ij} = h2^{i}h_{ij} \frac{X(Q_{i+1,j_1}) + X(Q_{i+1,j_2}) - X(Q_{i+1,j_3}) - X(Q_{i+1,j_4})}{X(Q_{i+1,j_1}) + X(Q_{i+1,j_2}) + X(Q_{i+1,j_3}) + X(Q_{i+1,j_4})}$$

and the horizontal shift will be

$$w2^{i+1}w_{i+1,j_1}-w2^{i}w_{ij} = w2^{i}w_{ij}\frac{X(Q_{i+1,j_1})-X(Q_{i+1,j_2})}{X(Q_{i+1,j_1})+X(Q_{i+1,j_2})},$$

where Q_{i+1,j_1} , Q_{i+1,j_2} , Q_{i+1,j_3} , Q_{i+1,j_4} are the four quadrants of Q_{ij} numbered as before and for simplicity of notation we assumed that u lies in Q_{i+1,j_1} . The magnitude of both w and w_{ij} is 2^{-i} , that of $X(Q_{i+1,j_1}) + X(Q_{i+1,j_2})$ is $n4^{-i}$, and that of $X(Q_{i+1,j_1}) - X(Q_{i-1,j_2})$ is $n^{1/2}2^{-i}$. Hence the magnitude of the horizontal shift is $n^{-1/2}$. The same holds for the vertical shift. These shifts are symmetrically distributed random variables and the shifts of a given point in different steps are nearly independent, thus it can be expected that their sum is of order $M^{1/2}n^{-1/2}$. For proving this latter statement one can again use the embedding (11) as long as $n2^{-i} \gg \log n$ and estimating the effect of the remaining $\log \log n$ steps simply by the sum of absolute values of the shifts, i.e. by $o(n^{-1/2}\log\log n)$.

References

- [1] L. R. Ford, Jr. and D. R. Fulkerson, A simple algorithm for finding maximal network flows and an application to the Hitchcock problem. Canad. J. Math. 9 (1957), 210-218.
- [2] R. KARP, Private communication (1982).
- [3] J. KOMLÓS, P. MAJOR and G. TUSNÁDY, An approximation of partial sums of independent RV's, and the sample DF. I. Z. Wahrscheinlichkeitstheorie verw. Gebiete 32 (1975), 111—131.
- [4] G. SCHAY, Nearest random variables with given distributions. Ann. of Probab. 2 (1974), 163—166.
- [5] G. TUSNÁDY, A remark on the approximation of the sample DF in the multidimensional case. Periodica Mathematica Hungarica 8 (1977), 53-55.

M. Ajtai, J. Komlós, G. Tusnády

Mathematical Institute of the Hungarian Academy of Sciences Budapest, P.O.B. 127 1364, Hungary